Name: \qquad School Team: \qquad
Event 1: Problem Solving (no calculators)
Part 1: Computation (2 pts. each)

1) $1 / 2+1 / x+3 / 10=1$
2) 20% of $15=x \%$ of 12
3) $100-x=(2)(3)(4)+36$
4) $0.36 \div x=4.0$
5) $18 / 42=x / 35$

Name: \qquad School Team: \qquad
Event 1: Problem Solving (no calculators)
Part 2: Problems Involving Order of Operations (2 pts. each)
Use the order of operations to evaluate each problem.

1) $3-2+3 \cdot 3-\sqrt{9}$
2) $3+8 \div 4-0 / 5+\sqrt{16}$
3) $\frac{9+7-2(3)}{3+2}$
4) $36-6^{2} \div 9-2$
5) $3\left(2^{2}+1\right)-30 \div 3$

Name: \qquad School Team: \qquad
Event 2: Conversions. (with calculators)
(5 points each)
12 inches = 1 foot
3 feet = 1 yard
1 mile = 5280 feet
3 teaspoons (t) $=1$ Tablespoon (T)
8 ounces (oz) = 1 cup (c)
2 cups (c) $=1$ pint (pt)
2 pints (pt) = 1 quart (qt)
2 tablespoons (T) = 1 ounce (oz)
4 quarts (qt) $=1$ gallon (gal)

Perform the following conversions, using the unit ratios. When necessary, round answers to the nearest hundredth.

1) How many inches are in $21 / 3$ yards?
2) How many cups are in 4 quarts?
\qquad inches
3) How many ounces are in 6 pints?
\qquad cups
\qquad ounces
4) How many yards are in 3 miles?
\qquad yards
5) How many teaspoons are in $1 \frac{1}{2}$ cups?

Name: \qquad School Team: \qquad
Event 3: Problem Solving (with calculators)
Part 1: Adding and Subtracting Mixed Numbers. (3 points each)
Add or Subtract.
Write answers as mixed numbers in reduced form. No decimal answers!

1) $1 \frac{5}{8}+2 \frac{1}{2}$
$=$ \qquad
2) $\frac{1}{6}+\frac{1}{2}+\frac{2}{3}$
$=$ \qquad
3) $\frac{9}{16}-\frac{3}{8}$
$=$ \qquad
4) $9 \frac{1}{4}-4 \frac{5}{16}$
$=$ \qquad
5) $9 \frac{1}{32}-3 \frac{3}{8}$ \qquad

Name: \qquad School Team: \qquad
Event 3: Problem Solving (with calculators)
Part 2: Multiplying and Dividing Mixed Numbers (4 points each) Multiply or Divide.
Write answers as mixed numbers in reduced form. No decimal answers!

1) $\left(\frac{1}{2}\right)\left(7 \frac{1}{3}\right)$
$=$ \qquad
2) $\left(9 \frac{1}{2}\right)\left(3 \frac{4}{5}\right)$
$=$ \qquad
3) $\left(3 \frac{3}{4}\right) \div\left(1 \frac{1}{2}\right)$
$=$ \qquad
4) $\left(5 \frac{5}{6}\right) \div\left(1 \frac{1}{14}\right)$
$=$ \qquad
5) $\left(3 \frac{1}{4}\right)^{2}$
$=$ \qquad

Name: School Team:

Event 4: Mental Math (no calculators)

Each answer is worth 2 pt each.

1) \qquad
2) \qquad
3) \qquad
4) \qquad
5) \qquad 10)
\qquad

Event 5: Team Problems (with calculators)

Area, Perimeter, Circumference, Surface Area and Volume Formulas

$b=$ base of the polygon
$h=$ height of the polygon
$\mathrm{b}_{1}=$ the first base
$b_{2}=$ the second base
$r=$ radius
Area (A) Perimeter (P) and Circumference (C)
Square $\quad A=(b)(h) \quad P=$ the sum of the sides of the polygon

Rectangle $\quad A=(b)(h)$
Parallelogram $\quad A=(b)(h)$
Trapezoid $\quad A=1 / 2 h\left(b_{1}+b_{2}\right)$
Circle

$$
\mathrm{A}=\pi r^{2} \quad \mathrm{C}=2 r \pi
$$

Surface Area (SA)

Volume (V)
p = perimeter
h = height of figure
$s=$ slant height of figure
$B=A R E A$ of the base of the figure
Examples of figures:

Prism	$\mathrm{SA}=\mathrm{ph}+2 \mathrm{~B}$	$\mathrm{~V}=\mathrm{Bh}$
Cylinder	$\mathrm{SA}=\mathrm{Ch}+2 \mathrm{~B}$	$\mathrm{~V}=\mathrm{Bh}$
Pyramid	$\mathrm{SA}=\pi \mathrm{rs}+\mathrm{B}$	$\mathrm{V}=1 / 3 \mathrm{Bh}$
Cone	$\mathrm{SA}=\pi \mathrm{rs}+\mathrm{B}$	$\mathrm{V}=1 / 3 \mathrm{Bh}$
Sphere	$\mathrm{SA}=4 \pi \cdot 3$	$\mathrm{~V}=\frac{4}{3} \pi r^{3} 3$

Name: \qquad School Team: \qquad

Event 5: Team Problems (with calculators)

Problem 1: Area \& Perimeter Problems involving Polygons
(5 points each) LABEL YOUR ANSWERS! You must use $\pi=3.11$

1) An illuminated sign in the main entrance of a hospital is a parallelogram with a base of 56 in . and an adjacent side of 42 in . How many inches of aluminum molding are needed to frame the sign?
2) The square parking lot of a doctor's office is to have curbs built on all four sides. If the lot is 160 ft on each side, how many feet of curb are needed? Allow 12 ft for a driveway into the parking lot.
3) The six glass panes in a kitchen light fixture each measure $41 / 2 \mathrm{in}$. along the top and 10 in . along the bottom. The top and bottom are parallel. The height of each pane is 8 in . What is the combined area of the six trapezoidal panes?
4) Tiles that are 6 in. $x 6$ in. cover the floor of a shower. How many whole tiles are needed for the floor if the shower measures 4.5 ft by 6 ft ?
5) Madison Duke is wallpapering the walls of a laundry room 8 ft by 8 ft by 8 ft high. How many square feet of paper will she need if there are 63 square feet of openings in the room?

Name: \qquad School Team: \qquad

Event 5: Team Problems (with calculators)

Problem 2: Area \& Circumference Problems involving Circles. (5 points each) LABEL YOUR ANSWERS! You must use $\pi=3.11$

1) Find to the nearest inch the circumference of a circle with a radius of 1 ft 9 in .
2) Find the area to the nearest square inch of the top of a circular tank with a diameter of 12 ft 8 in .
3) A 15-in. diameter wheel has a 3 -in. hole in the center. Find the area of a side of the wheel to the nearest tenth.
4) Sam has a circular pool with a diameter of 30 feet. There is a 3 foot wide walkway that goes around the pool. How much fencing is need to go around the walkway? Round answer to the nearest tenth.
5) A swimming pool is circular with a diameter of 30 feet. There is a 5 foot wide walkway surrounding the pool. What is the area of the walkway? Round to the nearest tenth.

Name: \qquad School Team: \qquad

Event 5: Team Problems (with calculators)

Problem 3: Surface Area Application Problems.
(5 points each) LABEL YOUR ANSWERS! You must use $\pi=3.14$

1) How many square inches are in the total surface area of an aluminum box with a $21 / 2 \mathrm{in}$. length, $43 / 4 \mathrm{in}$. height, and 3 in . width? Round to the nearest hundredth.
2) How many square centimeters of sheet metal are needed to form a conical rain cap 25 cm in diameter if the slant height is 15 cm ? Round to the nearest hundredth.
3) What is the total surface area of a cylindrical oil storage tank that has a $40-\mathrm{ft}$ diameter and $15-\mathrm{ft}$ height?
4) How many square feet of steel are needed to manufacture a spherical water tank with a diameter of 45 ft ? Round to the nearest tenth.
5) Find the total surface area of a conical tank that has a radius of 15 ft and a slant height of 20 ft . Round to the nearest tenth.

Name: \qquad School Team: \qquad

Event 5: Team Problems (with calculators)

Problem 4: Application Problems involving Volume.
(5 pts. each) LABEL YOUR ANSWERS! You must use $\pi=3.14$

1) What is the volume of a cylindrical oil storage thank that has a $40-\mathrm{ft}$ diameter and $15-\mathrm{ft}$ height? Round to the nearest whole number.
2) How many cubic feet are in a conical pile of sand that is 30 ft in diameter and is 20 ft high?
3) A cone-shaped storage container hold a photographic chemical. If the container is 80 cm wide and 30 cm high, how many liters of the chemical does it hold if $1 \mathrm{~L}=$ $1,000 \mathrm{~cm}^{3}$? Round to nearest whole liter.
4) Find the volume of a pyramid that has a square base of 48 m on a side and a height of 100 m .
5) If $1 \mathrm{ft}^{3}=7.48 \mathrm{gal}$, how many gallons can a spherical water tank hold if its diameter is 45 ft ? Round to nearest whole gallon.
